After attending a meeting with Pelindo yesterday, I attended a seminar hosted by FEB UI as part of a series themed “Conducting Impactful Business Research on an International Scale: Recent Trends, Methods, and Challenges.” Today’s session featured Agung Trisetyarso and Fithra Faisal Hariadi discussing “Research Methods: Quantum Approach to Coopetition Analysis and Disruptive Innovation.” This emerging approach leverages quantum states and mathematical formalisms like Dirac notation to model complex systems in social and economic research. By addressing uncertainty, interdependence, and multidimensional data, it opens pathways to innovative analyses of decision-making, preference patterns, and network dynamics.
Quantum methods uniquely represent probabilities through superposition (coexistence of multiple states) and entanglement (interdependencies between variables). In economics, they can model ambiguous preferences and market uncertainties, while in social sciences, they tackle paradoxical decision-making scenarios where traditional logic falls short. Additionally, entanglement provides insights into deep interdependencies, such as the impact of social ties or market ecosystems. The high-dimensional nature of quantum states allows for representing multifaceted variables, such as consumer preferences, and modeling dynamic changes over time—useful for exploring cultural shifts, policy impacts, or market evolution.
I found the discussion particularly compelling regarding its application to handling volatilities and uncertainties in economic systems and complexity-based strategies. The ability to accommodate multiple states and interdependent variables makes this approach well-suited to ecosystem-based strategies, addressing ambiguous preferences and paradoxical decision-making. I plan to delve deeper into these methods to explore their potential in advancing strategic insights.
It is not a regular occasion of any serving IEEE President to visit Indonesia. In our official note, the first serving IEEE President to visit Indonesia was Prof Peter Staecker in 2013 — he visited Bali for an IEEE Educational Program awareness while I was only days starting my service as the IEEE Indonesia Section Chair. This year, Prof Saiful Rahman, the current IEEE President, is visiting Indonesia for a couple days. The visit is related to the IEEE campaigns in climate change; so it is also the theme of his visit. He is visiting Indonesia accompanied by the current IEEE Indonesia Section Chair, Prof Gamantyo, and the IEEE Malaysia Chair-Elect, Bernard Lim.
As one of the programs within his visit, the IEEE Indonesia Section co-organise with TVRI, an on-air discussion titled the IEEE ASEAN Roundtable on Climate Change. The event was carried out today in TVRI, with the IEEE President Prof Saifur Rahman as the main speaker, and teens of other speakers from the industry, universities, research centres, and government agencies as participants in round table discussion form — including yours truly, representing the IEEE Indonesia Section Advisory Committee, and the IEEE TEMS Regional Leadership Subcommittee. The organiser is TVRI, led by Dr Agnes Irwanti, a member of its Supervisory Board; and Mr Iman Brotoseno, the CEO.
I explored the opportunity of using currently available or currently developed technology to reduce and overcome the impact of the climate change. Climate change is always one of the motivations behind many collaborative innovations in the development of technology and technology-based business.
Since I work in telecommunications industry, I started by giving an example in mobile industry. The use of cognitive radio and dynamic spectrum access (CR/DSA) may optimise green technology by improving the efficiency and utilisation the spectrum by dynamic adaptation to changing network conditions and environmental factors. In urban areas with high network congestion, CR can switch to less crowded frequency bands, reducing power consumption and improving network performance; and it could also optimised to choose the most green-powered network infrastructure available. CR device can lower its power when communicating over shorter distances, conserving energy. CR also enables dynamic spectrum sharing among different technologies. For example, a cognitive radio network can share spectrum with existing cellular networks during peak traffic hours and switch to alternative bands during off-peak times. This optimises resource usage and reduces energy consumption in both networks. With the use of blockchain, spectrum may be shared among operators with easier accounting and cost-sharing.
In more applicative approach in the industry, the paradigm of of ecosystem-based business growth has motivated enterprises to share capabilities, resources, opportunities, so they can reduce the cost and risk, while also reduce the cost for the environment by many sharing methods used in business ecosystems, facilitated by massive digitalisation that enables process and capabilities to be modularised, reused, integrated, improved, and orchestrated among collaborative or event competitive businesses.
The use of technology like the AI and robotics play important roles in addressing climate change in various ways. Some examples:
The technology might be used for autonomous sensor-equipped robots, drones, and satellites to monitor and collect data on climate-related parameters such as temperature, humidity, carbon emissions, deforestation, and more. These technologies help in obtaining real-time and accurate data for climate analysis.
AI facilitates the analysis of huge amounts of climate data, helping researchers build more accurate climate models. These models are crucial for understanding climate change, its causes, and predicting future climate trends.
AI to optimise energy consumption in various sectors, including transportation, manufacturing, and buildings. Smart grids and energy management systems use AI to balance energy supply and demand, reduce wastage, and integrate renewable energy sources effectively.
AI-based integrated logistics management (4PL / 5PL) may orchestrate logistics services to share the logistics resources they have, with better supply chain model, supported by better demand and production prediction. It will also reduce the use of fuel and environmental cost to expand the transportation facilities.
AI to support agricultural practices, reducing greenhouse gas emissions and improving crop yields. Additionally, robots can assist in precision agriculture, reducing chemical usage and improving sustainability.
There are many more aspect of technology to be used to improve the environmental conditions, including the power management, traffic management, personalised education, etc. Other speakers also explored what we can do in the aspects of education, government policy, and others.
Even after the formal discussion, we still continue the discussion during the lunch session, after Friday-prayer session. I think it is also my first experience to accompany an IEEE President to a mosque to attend a Friday prayer session.
We closed the day with a more relaxing discussion during dinner at Plaza Senayan.
Computer Science Doctorate Program of Binus University invited me to provide an Industrial Talk for their PhD-level students. I offered them a talk on the evolution of economy and technology towards the era of complexity.
The day for the lecture was December 2nd. But since I was in Bandung that day, the lecture was carried out as a zoominar. The moderator was Dr Agung Trisetyarso; and the sponsor was surely Dr Ford Lumban Gaol, the Vice Chair of Binus University Doctorate Program in Computer Science, who is also the current Chair of the IEEE Indonesia Computer Society Chapter.
I started the talk by introducing the IEEE TEMS — Technology & Engineering Management Society, i.e. an IEEE society where I am currently a member of its Regional Leadership Subcommittee. TEMS aims to drive IEEE members in maintaining essential engineering management skills, supporting the leadership career path of IEEE members, and fostering active knowledge transfer between the academic and practicing communities.
The lecture continued by exploring the digital transformation in the contexts of digital strategy, digital architecture, and its innovative business model, which inevitably drive global business into ecosystem-based collaborative business (Warner & Wäger 2019) with its platform-based value chain (Jacobides, Cennamo, Gawer 2018) and virtually-connected strategic collaborative network (Graça & Camarinha-Matos 2016). After discussing the methods in architecting business ecosystems, the lecture shifted to business ecosystem as paradigm shift (Cha 2020). I figured that it means that business ecosystems are considered as another inevitability in a more complex business environment — even for non-digital business.
Ecosystem players — i.e. business entities related to the ecosystems — may have different needs, goals, positions, and abilities. When interactions occur, members analyse, adapt, and form an evolutionary process. Adaptabilities within a business ecosystem shows that a business ecosystem is a system that has the characteristics of a complex adaptive system (CAS).
Adaptability in CAS occurs both to environmental changes and to changes in relation among players in the system (Arthur et al. 1997). Simultaneous and continuous adaptability among players in CAS will result in co-evolution (Gomes & Gubareva 2020). This co-evolution also allows changing roles in the business ecosystem. The result of this collective activity is adaptability that creates new things (emergence) with dynamic congruence.
But this is not a deep exploration on ecosystem business and CAS. Instead, this talk aims to provide some insights on the aspects of complexity, where CAS and ecosystem business are only some examples of its parts. I then restarted with a storytelling of the exploration of complexities, starting from Murray Gell-Mann, his book The Quark and The Jaguar, and the establishment of Santa Fe Institute.
The scientific method is the portmanteau of instruments, formalisms, and experimental practices that succeed in discovering basic mechanisms despite the limitations of individual intelligence. There are, however, on this planet, phenomena that are hidden in plain sight. These are the phenomena that we study as complex systems: the convoluted exhibitions of the adaptive world — from cells to societies. Examples of these complex systems include cities, economies, civilizations, the nervous system, the Internet, and ecosystems.
The nature of complexity would include the phenomena of non-linearity, dynamic interactions, adaptation, self-organisation, evolution, and emergence.
Its consequences in economy and business, is that economy is analysed not necessarily in equilibrium, its decision makers (or agents) are not superrational, the problems they face are not necessarily well-defined, and the economy is not as a perfectly humming machine but as an ever-changing ecology of beliefs, organising principles, and behaviours (Arthur 2021).
We continued from WB Arthur (2021): Complexity economics assumes that agents differ, that they have imperfect information about other agents and must, therefore, try to make sense of the situation they face. Agents explore, react and constantly change their actions and strategies in response to the outcome they mutually create. The resulting outcome may not be in equilibrium and may display patterns and emergent phenomena not visible to equilibrium analysis. The economy becomes something not given and existing but constantly forming from a developing set of actions, strategies and beliefs — something not mechanistic, static, timeless and perfect but organic, always creating itself, alive and full of messy vitality.
So my main message is that a competitive business should not avoid or overcome complexities. Instead, complexities are used or even created as a way to open new opportunities, design new capabilities, and conquering new markets.
For its implication in strategic management, I offer a view from the IEEE to use — in this era — a framework called strategic planning for exponential era (SPX). I explored this framework quite deeply. It is taken from an IEEE book authored by Espindola and Wright (2021), titled The Exponential Era: Strategies to Stay Ahead of the Curve in an Era of Chaotic Changes and Disruptive Forces.
My presentation was followed with a warm discussion with Binus’ lecturers and students on some technological and business aspects of complexity, complex adaptive system, and ecosystem-based business, including its current implementation in Telkom Indonesia. I also offered to continue the discussion using a collaborative framework of IEEE TEMS.
Arthur WB (2021) wrote a paper comparing conventional vs complexity economics.
Conventional neoclassical economics assumes:
Perfect rationality. It assumes agents each solve a well-defined problem using perfectly rational logic to optimize their behaviour.
Representative agents. It assumes, typically, that agents are the same as each other — they are ‘representative’ — and fall into one or a small number (or distribution) of representative types.
Common knowledge. It assumes all agents have exact knowledge of these agent types, that other agents are perfectly rational and that they too share this common knowledge.
Equilibrium. It assumes that the aggregate outcome is consistent with agent behaviour — it gives no incentive for agents to change their actions.
But over the past 120 years, economists such as Thorstein Veblen, Joseph Schumpeter, Friedrich Hayek, Joan Robinson, etc have objected to the equilibrium framework, each for their own reasons. All have thought a different economics was needed.
It was with this background in 1987 that the Santa Fe Institute convened a conference to bring together ten economic theorists and ten physical theorists to explore the economy as an evolving complex system.
Complexity economics sees the economy as not necessarily in equilibrium, its decision makers (or agents) as not superrational, the problems they face as not necessarily well-defined and the economy not as a perfectly humming machine but as an ever-changing ecology of beliefs, organizing principles and behaviours.
Complexity economics assumes that agents differ, that they have imperfect information about other agents and must, therefore, try to make sense of the situation they face. Agents explore, react and constantly change their actions and strategies in response to the outcome they mutually create. The resulting outcome may not be in equilibrium and may display patterns and emergent phenomena not visible to equilibrium analysis. The economy becomes something not given and existing but constantly forming from a developing set of actions, strategies and beliefs — something not mechanistic, static, timeless and perfect but organic, always creating itself, alive and full of messy vitality.
In a complex system, the actions taken by a player are channelled via a network of connections. Within the economy, networks arise in many ways, such as trading, information transmission, social influence or lending and borrowing. Several aspects of networks are interesting: how their structure of interaction or topology makes a difference; how markets self-organize within them; how risk is transmitted; how events propagate; how they influence power structures.
The topology of a network matters as to whether connectedness enhances its stability or not. Its density of connections matters, too. When a transmissible event happens somewhere in a sparsely connected network, the change will fairly soon die out for lack of onward transmission; if it happens in a densely connected network, the event will spread and continue to spread for long periods. So, if a network were to slowly increase in its degree of connection, the system will go from few, if any, consequences to many, even to consequences that do not die out. It will undergo a phase change. This property is a familiar hallmark of complexity.
Since 2016 I have a new role in Telkom Indonesia as the AVP (now Project Leader) of the Industry Synergy. The role of Synergy Department is simply developing the capabilities (mainly digital capabilities) and expanding opportunities of Telkom Group by maximising the collaboration with the industry. As a government policy at that time, the collaborations are prioritised with the state-owned companies (BUMN) in Indonesia. More than three years have passed then. We have changed the Ministry of BUMN, Telkom’s CEO, Telkom’s BOD in charge of Synergy programs, SVP and VP of Synergy, etc. But we are still developing our paradigm of digital synergy, i.e. developing digitally supported economic ecosystems in different sectors.
Using a metaphor from the environment, an innovation ecosystems consists of interdependent parties with different or often competing objectives and concerns, living and growing together in a common digital space, unified using one platform or more to enable them to live better and grow faster. Co-creation, collaboration, and competition are some key activities of the innovation ecosystems.
Last year, the new Minister of BUMN has addressed Telkom Indonesia to develop five ecosystems: Tourism, Agriculture, Logistics, Education, and Healthcare. We even hired a prominent global consultant to help us design the ecosystem. But this February, I requested an approval from the uplinks to add another ecosystem: the MSME ecosystem, to support non-digital micro, small, and medium business enterprises in digital way.
Previously we have had a program called RKB to develop the capability of SMEs in Indonesia. RKBs (BUMN’s creative house) have been established in 245 of 514 cities and regencies in Indonesia. In RKB, BUMNs provide training, consulting, and other facilities to leverage the capabilities of the SMEs in three product categories: culinary, craft, and fashion. But RKBs have failed to attract the SMEs since they do not really improve the sales of the SME products. An MSME ecosystem, on the contrary, should start with MSME commercialisation in mind.
We started with a small design by utilising a multichannel marketing application called SAKOO as our first platform. In March, many cities and locations in Indonesia (and other part of the world) are locked down (until the time I’m writing this post, btw) due to COVID-19 pandemic. We found some contexts for the usecase of the platform. To generate market, we will use BUMNs (and public, using campaigns supported by BUMNs) to create demands for the MSME market. BUMNs may buy the products of the MSMEs for their need, or as an aid to support the communities or health facilities in. Surely we first tried it with Telkom. Telkom has started purchasing MSMEs products using this platform, and has also sent support to communities in Depok.
The Minister of BUMN has a new expert staff: Ms Loto S Ginting — a smart lady working previously as a Director in the Ministry of Finance, managing sovereign bond. Now she advises the Minister of BUMN in the issues of Finance and MSME development. Our BUMN Law (UU 19/2003) mentions indeed that the strategic roles of the BUMNs include providing services for public, counterweight for private business, and support to develop small business and co-operatives. We approached her to discuss this first stage of MSME Ecosystem development program. She enthusiastically accepted the program. In addition, she improve the plan to add B2B transaction facility to the first stage of the program. The transaction data from B2B and B2C are further combined with data taken from e-Procurement systems of the BUMNs to make a dashboard to ensure the increase absorption of MSMEs products and services by the BUMNs. She calls this program PADI UMKM, stands for Pasar Digital UMKM / MSME Digital Market.
Meanwhile, the Covid-19 pandemic has brought the nation into an economic crisis. To survive, MSMEs and their employees need the public involvement. The Minister addressed to rush the MSME platform development. We work with our startup partners: Anchanto, Tees, Payfast, etc to enrich PADI UMKM platform with wider multichannel, logistics management, B2B capability, financing facility, etc. We need to finish it next month (June), so we can start the transaction on July. Eight BUMNs have been selected for pilot project. A new PMO has been assigned to finish this project.
It still felt like a miracle that everything was only in ideation last February, and all activities are carried out during lockdown periods, with all meetings held using vicon, and coordination using whatsapp. Let’s hope we can finish it on June, to support more prosperous small business in Indonesia in long term, or at least, for now, just to have them survive these crises..
We might be easily mention the name of the most important innovation in transportation over the last 200 years. We might mention something like the combustion engine, air travel, Ford’s T-model, and others. But we might not that easily mention the single biggest innovation in education. We can read that puzzling question at MIT Technology Review. The question is a gambit used by Anant Agarwal, the computer scientist named this year to head edX, which is the MIT-Harvard effort to stream a college education over the web, free, to anyone who wants one.
It is indeed rare to see major technological advances in how people learn. Internet, the web, and the power of data-crunching technologies should have changed dramatically the education methods. Remote classes have been arranged with video streaming with sophisticated interactive elements. Data and information on students could be processed individually or in group to make them learn more effectively. Online education is not new. In 2010, 31.3% of the US college students enrolled in at least one online course, while 700.000 students study in full-time distance learning.
Still, education is called inefficient and static with respect to technology. It is often cited as the next industry ripe for a major disruption. This belief has been promoted by Clayton Christensen, an HBS prrofessor who coined the term disruptive technology. Disruptive innovations, he said, find success initially in market where the alternative is nothing.
In Indonesia, where education in technology is still a limited priviledge, digital learning may find its way. Besides many limitation on the technology and the experiences, we may improve the efficiency of lecturing. As Agarwal said, the same 3 person team of a professor plus assistants that teaches analog circuit design to 400 MIT students now handles ten thousand students online, and could take 1 million. That is one of the result of the massive open online course, or MOOC. One of other expected results is how the top quality education, could change the world, or at least the nation. Why not? Currently about two thirds of the people signing up for the free online college course carried our in the US, comes from overseas. Means that for good universities, the methods, the curriculum, the materials are expected to spread easily, crossing the nation borders.
But, as implied, MOOC will also be profoundly threatening to weak institutions. Sebastian Thrun, a Google researcher, predicted that within 50 years, there might be only 10 universities still “delivering” higher education. The keyword he chose, somehow implicates another concern: the commodification of education. Or, as Jason Lane and Kevin Kinser warned in Chronicle of Higher Education, McDonaldisation of college classes: the exact same stuff served everywhere.
By working harder, we may change the direction, though. When Prof Gordon Day, then elected president of the IEEE, visited Yogyakarta in 2011, he mentioned the necessity for the engineering profession to expand the activities, by synergyzing engineers from academic world and industrial worlds, and supporting more roles from professionals in developing countries. That is the point that we will do these years. By synergyzing the academic and industrial world in the region, we will support Indonesian education institutions to grow and strengthen the education methods through digital technologies, to leverage the reputation of Indonesian education institutions globally, and to intensify the research and innovation to develop a breakthrough in education technology.